
graphing time-series data
using python end-to-end:

based on experiences at deviantART

Chase Pettet, 2014
Network And Systems Engineer
https://github.com/chasemp

Why?

At Velocity 2012 I saw OmniTI CEO give a talk called ‘It’s all about Telemetry”

I walked away thinking Cacti was in the stone age.

Lessons learned:

Data presentation matters a lot

Cacti and RRD in general are too static for presentation

Trending data (a baseline) has an extremely high ROI.

http://velocityconf.com/velocity2012/public/schedule/detail/23354

There are a lot of projects in this space

https://github.com/sensu
http://collectd.org/
https://github.com/noahhl/batsd

For more see:
http://graphite.readthedocs.org/en/latest/tools.html

https://github.com/sensu
https://github.com/sensu
http://collectd.org/
http://collectd.org/
https://github.com/noahhl/batsd
https://github.com/noahhl/batsd
http://graphite.readthedocs.org/en/latest/tools.html
http://graphite.readthedocs.org/en/latest/tools.html

Seeing value in Graphite

You can use globbing across metrics: web*.cpu.percent

You can use timeshifting to compare to previous:

This week vs. last week

This week vs. last 3 weeks

You can get raw data in json format for any purpose.

Graphite is a platform for integrating trending data into your work.

Since the API is so nice people have built lots of dashboards.

But you don’t need to use an external dashboard.

Graphite has a rendering engine built in. That means you can embed graphs anywhere.

Graphite has a bunch of built in post-processing functions for data.

Graphite can overlay any events relevant to your data:
curl -X POST http://localhost:8000/events/ -d '{"what": "Something Interesting", "tags" : "tag1 "}'

tl;dr: Graphite is flexible.

How is this devopsy?

Ops and Dev…

shared tools man...

What?

Diamond

Host based collection and submission service
for providing statistics to an upstream receiver.

Existing output handlers:
Graphite, RabbitMQ, Riemann, Sentry,
ZeroMQ, Syslog, Statsd, HTTP, etc

Statsd
Service that receives, aggregates, and flushes statistics at
a set interval to Graphite.

I am using a deviantART specific fork that is mostly
compatible with the canonical version from etsy.

https://github.com/deviantART/pystatsd

Aggregation methods:
Counter, Set, Gauge, Timer

Logster

Aggregates statistics from log files and submits
them to an upstream receiver.

Existing format handlers:
Postfix, Squid, Log4j, etc

Graphite

A highly scalable graphing system.

Internals:
Carbon receives and persists statistics
Whisper is the fixed size time series file format
Graphite-Web is a Django based front end

Lots of stuff, right?

How?

Running Diamond Agent
Installation:

aptitude install python-configobj

git clone https://github.com/BrightcoveOS/Diamond.git

cd Diamond/ && make builddeb

dpkg -i build/diamond_3.4.266_all.deb

Default Statistics Collectors:

CPU

Disk Space / Usage

Load Average

Memory

MountStats

SocketStats

VMStat

[2014-02-25 09:40:17,344] [Thread-29735] servers.idle23.memory.Buffers 1245184 1393350017
[2014-02-25 09:40:17,346] [Thread-29735] servers.idle23.memory.Active 457539584 1393350017
[2014-02-25 09:40:17,346] [Thread-29735] servers.idle23.memory.Inactive 100413440 1393350017
[2014-02-25 09:40:17,346] [Thread-29735] servers.idle23.memory.SwapTotal 0 1393350017
[2014-02-25 09:40:17,346] [Thread-29735] servers.idle23.memory.SwapFree 0 1393350017

tail /var/log/diamond/diamond.log

https://github.com/BrightcoveOS/Diamond.git

Running Logster: Log Culling
Installation:

git clone https://github.com/etsy/logster.git

python bin/logster \

 -p servers.myhost.postfix \

 --output=statsd \

 --statsd-host=statsd:8125 \

 PostfixLogster /var/log/mail.log

statsd:8125 servers.proxy01b.postfix.numSent:1000|g

statsd:8125 servers.proxy01b.postfix.pctSent:100.0|g

statsd:8125 servers.proxy01b.postfix.numDeferred:2|g

statsd:8125 servers.proxy01b.postfix.pctDeferred:3.0|g

statsd:8125 servers.proxy01b.postfix.numBounced:0|g

statsd:8125 servers.proxy01b.postfix.pctBounced:0.0|g

Running Statsd
Running statsd (not persistent):

aptitude install python-twisted

git clone https://github.com/deviantART/pystatsd.git

cd pystatsd/ && python statsd.py

Sending data to Statsd:

import socket #get socket module
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0) #setup socket handler
s.connect((10.10.10.10, 8125)) #open ‘connection’
s.send("counter_at_50_perc_sample:1|c|@0.5") #send a counter sampled at half your rate
s.send("counter_at_one_to_one:1|c|@1") #send a counter sampled at 1:1 rate
s.send("mytimer:100|ms") #send the operation time of mytime
s.send("mygauge:1|g") #send a gauge for 1
s.send("myset:1") #send a set of 1
s.close()

https://github.com/deviantART/pystatsd.git

dA Statsd Niceties
● Uses Twisted to handle the network portion

● Can withstand Qualys and Nessus Vulnerability Scanning

● Provides an XMLRPC interface for monitoring

● Publishes a lot more meta stats about internals

● Cleanly handles 'bad' metric types w/ discard

● Survives and reports failed Graphite flushes

● Allows multiple metrics in a single message using newline character

● Failures go to stderror

● Has a '-d' debug option for dumping matching incoming stats to terminal

● Can notify NSCA on failures if an notify_nsca function is provided

● Allows incoming stats over TCP as well as UDP

Can handle 50,000+ metric output on a 1 core VM using >1Gig RAM

statsdmonitor.py output

Understanding Statsd
Question:

If Diamond can send statistics directly to Graphite then why do I need Statsd?

Answer:

You need Statsd if you want to submit data at intervals smaller than the smallest one stored by Graphite.

Statsd accepts data at all times, summarizes it and submits to Graphite.

Graphite only needs to store one datapoint per X seconds saving on disk space, and resources.

If you want to submit a value very ten seconds and you store 10 second intervals of data in Graphite you do not need Statsd.

Installation:

pip install whisper

pip install carbon

pip install graphite-web

Further instructions:

http://chasemp.github.io/2013/06/15/debian-graphite-install/
http://chasemp.github.io/2013/09/12/graphite-on-centos6-lessons-learned/

Running Graphite

http://chasemp.github.io/2013/06/15/debian-graphite-install/
http://chasemp.github.io/2013/06/15/debian-graphite-install/
http://chasemp.github.io/2013/09/12/graphite-on-centos6-lessons-learned/
http://chasemp.github.io/2013/09/12/graphite-on-centos6-lessons-learned/

Graphite Web Interface

Resources:
http://velocityconf.com/velocity2012/public/schedule/detail/23354

https://github.com/BrightcoveOS/Diamond

https://github.com/chasemp/pystatsd

https://github.com/graphite-project

https://github.com/etsy/logster

http://chasemp.github.io/2013/05/17/using-graphite-events/

http://chasemp.github.io/2013/08/15/graphite-test-clients/

http://chasemp.github.io/2013/06/15/debian-graphite-install/

http://chasemp.github.io/2013/03/01/graphite-all-metrics/

http://chasemp.github.io/2013/09/12/graphite-on-centos6-lessons-learned/

http://velocityconf.com/velocity2012/public/schedule/detail/23354
http://velocityconf.com/velocity2012/public/schedule/detail/23354
https://github.com/BrightcoveOS/Diamond
https://github.com/BrightcoveOS/Diamond
https://github.com/chasemp/pystatsd
https://github.com/chasemp/pystatsd
https://github.com/graphite-project
https://github.com/graphite-project
https://github.com/etsy/logster
https://github.com/etsy/logster
http://chasemp.github.io/2013/05/17/using-graphite-events/
http://chasemp.github.io/2013/05/17/using-graphite-events/
http://chasemp.github.io/2013/08/15/graphite-test-clients/
http://chasemp.github.io/2013/08/15/graphite-test-clients/
http://chasemp.github.io/2013/06/15/debian-graphite-install/
http://chasemp.github.io/2013/06/15/debian-graphite-install/
http://chasemp.github.io/2013/03/01/graphite-all-metrics/
http://chasemp.github.io/2013/03/01/graphite-all-metrics/
http://chasemp.github.io/2013/09/12/graphite-on-centos6-lessons-learned/
http://chasemp.github.io/2013/09/12/graphite-on-centos6-lessons-learned/

